小学六年级数学课

如何上好小学六年级数学课?

如果是老师,就将课备好点,如果是学生,就认真听讲。1、紧扣课本 大多数学生对已讲过的知识会有遗忘现象,所以上复习课首先必须以课本为主,把课本上的概念、重要习题先复习一遍,帮助学生回忆上新课所必须注意的重点、难点,理清概念。2、精选例题 复习课是以精讲、多练为主的课,要想上好习题课必须选好例题,选好练习题,尤其是平时极容易出现错误的。精选的例题必须紧紧围绕教学目的且具有典型性;要从实际出发,有针对性;要有助于学生举一反三,触类旁通,具有启发性。在上复习课的时候,如果按照题号顺序依次讲解,没有将同类型的习题归类讲解,使学生接受的知识零零散散。所以,在教学过程要将不同类型的题目做到分类、整合,在讲解过程中,要将该类问题讲透彻,让学生完完全全的明白理解,凡是有不理解的题,多练以增加记忆,达到真正理解掌握。3、认真考虑教学方法 绝大部分的时间里,复习课采用的是我们传统的教学模式:教师在上面讲,学生在下面听。这样就导致有些学生的积极性不高,上复习课感觉很轻松,教学效果自然就不好。其实,在教学中我觉得可以改变一下,以学生为主角,通过学生来讲解自己错误思路的方法,发现问题之所在。从学生讲述自己错误的思路,发现其中大家普遍存在的问题,再着重讲解,这样教学效果会好得多。对所选的例题课前要认真研究,寻找最优方法或一题多解。在讲解时要详细得当,注意启发学生积极思维,使学生在教师的诱导下,逐步深入,层层剖析,使学生听的条理,学的主动。同时要处理好讲与练的关系,根据不同的教学内容,采用不同的教学方法,可以以讲为主,也可以以练为主。4、认真配置好课内外的练习题。 选好、讲好习题课的例题固然重要,但要使学生获得知识,提高能力,还必须通过学生自己动手动脑。因此对于复习课要求学生既要认真完成课堂练习,也要认真做好课外习题。教师在选择课内外练习题时,要认真筛选,决不能草率从事,掉以轻心。5、阶段性测试。 阶段性测试是检验教师知道是否偏离,学生是否真正掌握的最好途径。最后,根据本班学生实际情况,采取因材施教、因人而异的教学方法。上课认真听课,要理解一些概念,不过还是要看你对数学有没兴趣,我是初中生了,这是个人经验,仅供参考。 老师要让学生上课有趣才行。 我是学生哦关键是备课,备好教参合学生互动,了解。

怎样辅导小'学六年级学生学数学

小学和初中阶段就是打基础的阶段,最主要的就是把基础知识学扎实了,不需要做太多的难题、拔高题。以课本为主,只需要一本比较注重基础的课外教材即可。重点就是扎实掌握课本知识和培养他们自己思考问题的习惯,千万不要让他们对你的辅导产生依赖,这样会影响他以后的学习水平。一对一家教的老师指出,小学六年级是小升初最关键的年级了,然后数学是给孩子压力最大的一个科目,因为考入一个重点中学,数学成绩要达到98分以上的成绩,因此选择给孩子做什么样的辅导方式是关键。
一对一家教的老师总结如下:
1、面向全体学生,学习内容按学习过程分层次设置,兼顾不同学生的学习需要。
2、结合学业考试要求,提炼考点,使学习更具针对性。
3、装帧、印刷采取“1+1+1”模式,即课堂同步、单元测试、参考答案分册装订,方便教与学。
4、各学科的编写讲求个性化,体现本学科的学习要求和特点。
5、基础与能力并重,突出学习过程与思维方法。
进行六年级数学一对一辅导的时候,要把教学内容细化分解知识点,设计适合学生训练的同步习题和较详细的知识点讲解。海洋,需要设计编写拓展提高型的题目,为什么呢?就是为了让学生在掌握基本知识内容的时候可以适当提高难度,活学活用。
六年级数学力求更好地体现课程标准理念,抓住重点、难点基础知识与能力并重和易错易混淆的问题给学生进行指导,希望可以让学生能更好地多角度、多层次掌握教材内容,这样就可以激发学生学习数学的兴趣,同时可以发展他们的思维能力

孩子升上了六年级,在这小升初的关键时期,孩子数学成绩总是拖后腿怎么办这事一定很困扰家长,不知道如何在短时间内尽快提高孩子的数学成绩。下面和大家分享一下怎样辅导小学六年级学生学数学的几个方法,希望能够帮助到大家。

1、从基础抓起

孩子的教育是家庭的头等大事,所以家长们应该要一起参与进来。六年级的数学从理论上来说还是比较简单的,以初步的简单应用题和一些算术为主。所以我一般会在下班后辅导孩子做作业,但是呢,他的基础实在是太差了,一些简单的计算因为没有背熟乘法口诀表而犯错。所以我会督促他背好乘法口诀表,随时抽查,防止他懒惰。

2、制定科学的学习计划

孩子基础差,所以数学成绩才很难提高。虽然我知道这一点,但是要帮补他重新找回1~6年级的数学基础有点不切实际,这花的精力实在是太大了。所以给孩子报了明师教育的数学辅导小班课程学习,里面分了好学班、精学班和睿学班三个班型。

好学班适合基础不够扎实、成绩不够稳定,学习勤奋但进步不明显的学生。课程设置也偏向于巩固基础、注重技巧与方法练习。像我孩子基础不扎实的,就比较适合好学班,以打好基础为主。

精学班适合学习基础扎实,想要更好地冲刺高考、能力较好的学生。课程设置比较着重基础知识梳理,以稳定基础题、中等强度题、冲刺难题为主要讲授内容。

睿学班适合基础特别扎实,学习能力突出的学生。课程设置偏向于延伸高考知识点,以中高难度题型为主要讲授内容。

另外老师还根据孩子的学习情况整理了一套系统的知识重点,大大提高了孩子的学习效率。在老师的帮助下,孩子制定了科学的学习计划,这让他在学习上少走了很多弯路,也减轻了家长辅导他学习的负担。

3、查漏补缺,重视纠错

毕竟孩子处在小升初的关键时期,所以即使帮他报了补习班我也不敢懒惰,保持下班后辅导孩子做作业的习惯,让他在课堂上听不懂的知识点就拿到补习班问老师。而老师也会根据这一个知识点联系到其他复合考点的题型,从而拓展孩子的思维能力。

另外老师还叮嘱,若发现孩子接错了题,不要直接告诉孩子错题的答案,而是注重培养他的思考能力,自己发现问题并且改错。这还挺有道理的,毕竟学习数学,具有数学思维很重要。

人教版小学六年级上数学第一课

失眠与很多疾病有关
,若疾病治好了
,失眠症状一般能消失
,恢复正常睡眠。了解能引起失眠的疾病
,对更好地改善睡眠是有所裨益的。
中枢神经系统疾病
:如脑外伤、肿瘤、松果体瘤、脑血管疾病
(脑出血、脑梗死
)、帕金森病、老年性痴呆、癫痫、偏头痛等。
呼吸系统疾病
:如慢性支气管炎、慢性阻塞性肺气肿、肺部慢性感染性疾病等。
泌尿系统疾病
:慢性肾功能衰竭时的睡眠
,常常是短而破碎
,只有给以肾透析或肾移植才能有效地解决。尿毒症还可以因毒物在体内蓄积
,而不逆地损伤中枢神经细胞及使机体代谢紊乱。糖尿病、尿崩症、泌尿系统感染引起的尿频
,也可以干扰睡眠。
过敏性疾病
:也常常干扰睡眠
,如皮肤瘙痒、鼻阻塞
,使睡眠无法进行。
消化系统疾病
:如溃疡病、肠炎、痢疾等造成腹痛、烧心、恶心、呕吐、腹泻及发热等症状
,也明显干扰正常睡眠。
循环系统疾病
:特别是心功能衰竭、心绞痛、高血压、动静脉炎等都可以引起失眠。
骨骼、肌肉、关节的炎症和疼痛
:是临床上常见的疾病
,也不同程度地引起睡眠障碍。
另外
,经前期紧张综合征、更年期综合征等也可引起失眠等。房子旁边长着一颗散发清香的桃树。代表你们两个可以穿一条裤子
表示你们可以勾结在一起!
合作伙伴代表可以相互信任
如果是男女朋友么,你明白的

六年级上学期数学哪课适合做公开课

教圆好了,因为其他的都和分数有关,单独教一节,学生会不懂。。而圆是几何知识,,另外教公开课应该没问题我同意359898180的观点。
教案嘛~~~~~
http://www.xxjszj.com/article_html/c6/14352.html 来这儿看看!应该是方程到中学和高中都有用到我认为应该教四则混合运算,这是六年级的一个较重要的内容.
应在学期中段,有分数的一些知识后再上.
四则运算与小学几乎相同,但学生容易出错,上公开课的效果不错.
而教案因人而异,要适合才好.

如何上好小学人教课标版六年级数学课

你这个脑筋急转弯的吧是历史上最慢雾化呼吸道感染的小孩子,一个是缓解病情效果好,没有打针吃药那样痛苦,二一个副作用小一点,可以说是呼吸系统疾病治疗很好的方法了。不过冰叔说现在还不是时候..

每一个厂家的控制器可能略有不同,但大致上是一样的!下面是深圳弘翼电源生产的太阳能路灯控制器使用说明书,希望对你有所帮助!

■使用说明:

充电及超压指示:当系统连接正常,且有阳光照射到光电池板时,充电指示灯(1)为绿色常亮,表示系统充电电路正常;当充电指示灯(1)出现绿色快速闪烁时,说明系统过电压,处理见故障处理内容;充电过程使用了PWM方式,如果发生过过放动作,充电先要达到提升充电电压,并保持10分钟,而后降到直充电压,保持10分钟,以活激蓄电池,避免硫化结晶,最后降到浮充电压,并保持浮充电压。如果没有发生过放,将不会有提升充电方式,以防蓄电池失水。这些自动控制过程将使蓄电池达到最佳充电效果并保证或延长其使用寿命。

蓄电池状态指示:蓄电池电压在正常范围时,状态指示灯(2)为绿色常亮;充满后状态指示灯为绿色慢闪;当电池电压降低到欠压时状态指示灯变成橙黄色;当蓄电池电压继续降低到过放电压时,状态指示灯(2)变为红色,此时控制器将自动关闭输出,提醒用户及时补充电能。当电池电压恢复到正常工作范围内时,将自动使能输出开通动作,状态指示灯(2)变为绿色;

负载指示:当负载开通时,负载指示灯(3)常亮。如果负载电流超过了控制器1.25倍的额定电流60秒时,或负载电流超过了控制器1.5倍的额定电流5秒时,指示灯(3)为红色慢闪,表示过载,控制器将关闭输出。当负载或负载侧出现短路故障时,控制器将立即关闭输出,指示灯(3)快闪。出现上述现象时,用户应当仔细检查负载连接情况,断开有故障的负载后,按一次按键,30秒后恢复正常工作,或等到第二天可以正常工作。

■工作模式设置:

设置方法:按下开关设置按钮持续5秒,模式(MODE)显示数字LED闪烁,松开按钮,每按一次转换一个数字,直到LED显示的数字对上用户从表中所选用的模式对应的数字即停止按键,等到LED数字不闪烁即完成设置。每按一次按钮,LED数字点亮,可观察到设置的值。

纯光控“0”模式:当没有阳光时,光强降到启动点,控制器延时10分钟确认启动信号后,开通负载,负载开始工作;当有阳光时,光强升到启动点,控制器延时10分钟确认关闭输出信号后关闭输出,负载停止工作。

光控+延时方式(“1”—“9”,“0.”—“5.”):启动过程同前。当负载工作到设定的时间就关闭负载,时间设定见下表。光控优先。

通用控制器方式“6.”:此方式仅取消光控、时控功能、输出延时以及相关的功能,保留其它所有功能,作为一般的通用控制器使用。

调试方式“7.”:用于系统调试使用,与纯光控模式相同,只取消了判断光信号控制输出的10min延时,保留其它所有功能。有光信号即接通负载,无光信号即关断负载,方便安装调试时检查系统安装的正确性。

输出模式说明:在LED数码管显示模式设置值时,显示数字不带有小数点即“0”至“9”和“0.”至“5.”模式时输出为纯直流DC输出。如果数字不带小数点即“0”至“9”时,数码管小数点不亮。

■工作模式设置表:(注:当选择LED数码带小数点模式时,数码管的小数点长亮,对控制器的整体性能没有影响,只作区分用)

5、负载连接,将负载的连线接入控制器上的负载输出端,注意+,—极,不要反接,以免烧坏用电器。

怎样才能上好小学六年级数学

小学6年级数学辅导怎样做?数学在大部分人的眼中是一科较难的科目,并且跟随年级的增长也逐步变难,正因为这样数学是被拉分的科目.好多学生以为数学就是练习,以为练习好多,得分就会升高.其实有一个关键因素在阻碍我们数学得分的升高,那就是好的学习习惯.

小学6年级数学辅导需要帮助孩子建立的八种好习惯:

1、认真"听"习惯.为了使教学和学习同步,教师应该让学生集中精力在课堂上思考,专心听老师的讲课内容,对重点和难点做标记.

2、积极的"思考"习惯.积极思考教师和其他同学提出的数学问题,使他们始终处于学习活动中,这种方法对于提高成绩效果明显.

3、仔细"检查"习惯.检验问题的能力是学生综合的表达.教师应要求学生认真阅读教材内容,学会掌握单词,并正确理解内容,关键内容如、公式、规律、法则、等重要内容应经过认真审查、反复练习,准确把握每个知识点.

4、自己"做题"的习惯.练习是学习的重要组成部分,它是学生进行对知识实践的过程,直接反映出孩子对知识的理解.教师应教育学生理解知识,不要盲目改变他们的意见.不受别人的影响,用自己的思维去找到答案.

5、擅长"问"习惯.俗话说:"善于提问的孩子将来才有出息."教师应积极鼓励学生提问,向老师,学生、父母提问,强烈鼓励学生设计自己的数学问题,并与他人沟通,以便他们更好地整合师生,增进同学友谊,使学生的沟通能力逐渐提高.

6、有"争论"的习惯.讨论和辩论是思考的最佳媒介.它可以在教师和学生之间形成信息交换,让学生在争论中表达自己、相互启蒙、增长知识.

7、早期"学习"习惯.从小学生的理解角度来看,为了获得良好的学习成绩,我们必须牢牢抓住预习、听讲、作业、复习四个基本环节.

8、重复"检查"习惯.培养学生的考核能力习惯是提高数学学习质量的重要举措,这是培养学生自我意识和责任感的必要过程.小学6年级数学辅导只要从以上八点出发,相信孩子在很短的时间内会有惊人的进步.

小学六年级数学总复习资料有哪些?

一、轴对称图形
1、只有1条对称轴的图形是(等腰三角形、等腰梯形、半圆)
有2条对称轴的图形是(长方形)
有3条对称轴的图形是(等边三角形)
有4条对称轴的图形是(正方形)
有无数条对称轴的图形是(圆、圆环)
2、圆的对称轴的图形是(直径所在的直线)
3、对称轴是直线
4、圆是(平面图形、曲线、轴对称)图形。
二、在同圆或等圆里(必不可少的前提),直径是半径的2倍,半径是直径的一半。
d=2r r=d÷2
三、在同圆或等圆里(必不可少的前提),直径都相等、半径都相等。
四、圆心确定圆的位置、半径确定圆的大小。圆规两脚之间的距离是圆的半径。
五、圆的周长
1、围成圆曲线的长度叫做圆的周长。
2、圆的周长除以直径的商,(周长和直径的比值),叫做圆周率,它是一个固定不变的数,和圆的大小无关。π>3.14。圆的周长大约是直径的3.14倍。
3、c圆=πd c圆=2πr
4、长方形的周长=(长+宽)×2 =(a+b)×2
正方形的周长=边长×4=4a
5、长度和周长单位有:km m dm cm mm
6、已知周长求直径 d=C÷π
已知周长求半径 r=C÷π÷2
7、3.14×(1――9)
六、半圆的周长
C半圆=d+πd÷2 C半圆=2r+πr
七、圆的面积
1、把圆平均分成若干份,可以拼成一个平行四边形或长方形。
2、S圆=πr2=π(d÷2)2
3、S长方形=长×宽=ab
S正方形=边长×边长=a2
S平行四边形=底×高=ah
S三角形=底×高÷2=ah÷2
S梯形=(上底+下底 )×高÷2=(a+b)×h÷2
S半圆=πr2÷2
S圆环=S大圆-S小圆=π(R2-r2)
4、面积和表面积单位有:平方千米 公顷 平方米 平方分米 平方厘米
1平方千米=100公顷 1公顷=10000平方米
5、如果长方形的周长=正方形的周长=圆的周长,那么它们当中圆的面积最大。
6、(11――19)2
八、半径扩大n倍,直径扩大n倍,周长扩大n倍,面积扩大n2倍。
第二单元
1. 一、
1、是、等于、相当于,意思相同。
2、几成=几折
1. 二、求提高了、降低了、增加了、减少了、节约了、多了、少了百分之几,都是用:甲÷乙
2. 三、小数、分数和百分数的互化
1. 四、解答分数应用题的一般步骤
1. 找单位“1”
2. 判断单位“1”是已知的还是未知的
3. 如果单位“1”已知的,用乘法计算:单位“1”×对应分率
4. 如果单位“1”未知的,用除法计算:已知量÷对应分率=单位“1”;另外,也可以用方程。
5、减数=被减数-差 除数=被除数÷商
五、常见的数量关系
1、速度×时间=路程 路程÷速度=时间 路程÷时间=速度
2、单价×数量=总价 总价÷单价=数量 总价÷数量=单价
3、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
4、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
六、方程
1、含有未知数的等式叫做方程。
2、解方程就是“唱反调”
七、利息=本金×利率×时间
第三单元
图形变换和图案设计时,会用到:轴对称、平移和旋转。
1. 轴对称
2. 平移:关注是上下平移还是左右平移,尤其是平移了多少格
3. 旋转:关注是顺时针还是逆时针方向旋转,关注旋转的角度是多少度
4. 运算定律:
加法交换律和性质
a+b=b+a
加法结合律
a+b+c=a+(b+c) 25+37+63=25+(37+63)
乘法交换律
a×b×c=a×c×b 25×9×4=25×4×9
乘法结合律
a×b×c=(a×c)×b 128×3×8=(125×8) ×3
乘法分配律
两个数的和与一个数相乘,可以把这两个加数分别和这个数相乘,再把两个级相加。
a×(b+c)=a×b+a×c 8×(125+25)=8×125+8×25

2.37×99
=2.37× (100-1 )
=2.37×100-2.37×1
减法的运算性质
a―b―c=a-(b+c) 14.29―3.9―6.1=14.29―(3.9+6.1)
第四单元
1. 两个数相除又叫做这两个数的比。其中,比号前面的数是比的前项,比号后面的数是比的后项,前项÷后项=比值
2. 比和除法、分数的关系
a÷b=a :b= (b≠0,除数、分母和后项不能为0)
例如:15÷25=( ):( )==( )%=( )(填小数)=( )折=( )成
再如:甲数和乙数的比是4:3,甲数是乙数的( / ),乙数是甲数的( / ),甲数是乙数的( )%,乙数是甲数的( )%,甲数比乙数多( )%,乙数比甲数少( )%。
(提示:甲数=4 乙数=3)
3. 化简比
化简比就是把一个比化成最简单的整数比。也就是:前项和后项都是整数,并且前项和后项只能有公因数1。
4. 注意:比值是一个数,而化简比结果是一个比。
例如::0.75化成最简单的整数比是( ),比值是( )。
5. 比的应用
重点关注:类似已知长方形的周长是28厘米,长和宽的比是4:3,求长方形的长、宽或面积。
6. 三角形三个内角度数的比是1:2:3或1:1:2,这个三角形是(直角)三角形。
7. 质量单位:吨 千克 克
8. 容积单位:升 毫升
9. 体积单位:立方米 立方分米 立方厘米
1升=1立方分米 1毫升=1立方厘米
10、人民币单位:元 角 分
11、大于0的数叫做正数,小于0的数叫做负数。正数和负数可以用来表示具有相反意义的量。0既不是正数也不是负数。
12、正数和负数可以抵消,比如:+5和-5能完全抵消;-8和+3抵消后得-5。
13、统计图有:(复式)条形统计图、(复式)折线统计图、扇形统计图。
14、条形统计图:很容易看出各种数量的多少。
15、折线统计图:不但可以看出数量的多少,而且能够表示数量的增减变化。
16、扇形统计图:能呈现各部分与总数的百分比。
 (1) 平面图形知识;(2)平面图形的周长和面积;(3)立体图形的认识;(4)立体图形的表面积和体积。
(1) 平面图形知识
①直线、射线、线段的特点、联系与区别。
②角的特征、角的分类、角的度量方法。
③垂直与平行。
④三角形的特征,分类(按边分、按角分)。
⑤四边形。每类图形的特征,特殊与一般的关系。
⑥圆与扇形。圆的特征、直径、半径的特点,扇形与圆的关系。
⑦轴对称图形。(能画出学过的轴对称图形的对称轴)
要求:①掌握特征、建立联系,让学生感受到点到线,线到面、面到体的联系。
②能根据图形特征进行合理的判断、选择。
(2) 平面图形的周长和面积
①理解周长与面积概念。
②掌握每种图形的周长与面积计算公式及推导过程。
③能应用公式灵活解决问题。
①长方体、正方体、圆柱、圆锥的特征。
②长、正方体的关系。
(3) 立体图形的表面积和体积
②会求长方体、正方体、圆柱的表面积和体积;圆锥的体积。
③建立这四种立体图形体积计算的联系。
④加强体积与表面积的区别、体积与容积的区别的对比训练。
建议:几何初步知识这部分内容,知识容量比较大,复习时要让学生真正参与到学习中来,提高学习效率,教师就要设计一些具有思考性,挑战性、综合性强的问题激发学生积极思考,调动学生的积极性,充分发挥学生的主体作用,让他们在探究的过程中进一步理解、巩固所学的知识,体验成功的快乐,掌握学习的方法。
如:平面图形面积知识网络图由学生独立完成(独立思考、查阅资料、寻求帮助);长方体、正方体表面积可让学生自带磁带盒,设计包装方案——
切忌:面面俱到,不停讲解,不断提问,大量练习,只求结果,不重过程。
6、简单的统计
复习要点及要求:
(1) 平均数:理解平均数的意义;掌握求平均数的方法;能应用平均数解决实际问题。
(2) 统计表、统计图:了解统计表、图的种类,特点,制作方法,会分析统计图表。做历年的考试真题会比较有效,孩子提前熟悉考试真题难度,也是一轮复习。毕竟孩子刷题准备题海战术,不如用真题做训练,更直接有效。我觉得《三维数学·历年真题卷》那本试卷做复习挺好的,答案也详细,还有每年的考试动向分析,孩子面对难题难点还有视频讲解可以看。

小学六年级上册人教版数学重要知识点

六年级上册数学知识点
第一单元 位置
1、什么是数对?
——数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。
作用:确定一个点的位置。经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。
(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)
( 列 , 行 )
↓ ↓
竖排叫列 横排叫行
(从左往右看)(从下往上看)
(从前往后看)
2、图形左右平移行数不变;图形上下平移列数不变。
3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。
第二单元 分数乘法
(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如: ×7表示: 求7个 的和是多少? 或表示: 的7倍是多少?
2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)
例如: × 表示: 求 的 是多少?
9 × 表示: 求9的 是多少?
A × 表示: 求a的 是多少?
(二)分数乘法计算法则:
1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)
(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)
注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b >1时,c>a.
一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b <1时,c<a (b≠0).
一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b =1时,c=a .
注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
附:形如 的分数可折成( )×
(四)分数乘法混合运算
1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)
2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。
例如:a×b=1则a、b互为倒数。
3、求倒数的方法:
①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
4、1的倒数是它本身,因为1×1=1
0没有倒数,因为任何数乘0积都是0,且0不能作分母。
5、任意数a(a≠0),它的倒数为 ;非零整数a的倒数为 ;分数 的倒数是 。
6、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
假分数的倒数小于或等于1。
带分数的倒数小于1。
(六)分数乘法应用题 ——用分数乘法解决问题
1、求一个数的几分之几是多少?(用乘法)
“1”× =
例如:求25的 是多少? 列式:25× =15
甲数的 等于乙数,已知甲数是25,求乙数是多少? 列式:25× =15
注:已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。
2、( 什么)是(什么 )的 。
( )= ( “1” ) ×
例1: 已知甲数是乙数的 ,乙数是25,求甲数是多少?
甲数=乙数× 即25× =15
注:(1)“是”“的”字中间的量“乙数”是 的单位“1”的量,即 是把乙数看作单位“1”,把乙数平均分成5份,甲数是其中的3份。
(2)“是”“占”“比”这三个字都相当于“=”号,“的”字相当于“×”。
(3)单位“1”的量×分率=分率对应的量
例2:甲数比乙数多(少) ,乙数是25,求甲数是多少?
甲数=乙数 ± 乙数× 即25±25× =25×(1± )=40(或10)
3、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
4、什么是速度?
——速度是单位时间内行驶的路程。速度=路程÷时间 时间=路程÷速度 路程=速度×时间
——单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。
5、求甲比乙多(少)几分之几?
多:(甲-乙)÷乙
少:(乙-甲)÷乙
第三单元 分数除法
一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
1、被除数÷除数=被除数×除数的倒数。例 ÷3= × = 3÷ =3× =5
2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:
①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c<a (a≠0)
②除以小于1的数,商大于被除数:a÷b=c 当b<1时,c>a (a≠0 b≠0)
③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a
三、分数除法混合运算
1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序:
①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
注:(a±b)÷c=a÷c±b÷c
四、比:两个数相除也叫两个数的比
1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
注:连比如:3:4:5读作:3比4比5
2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20= =12÷20= =0.6 12∶20读作:12比20
注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
3、化简比:化简之后结果还是一个比,不是一个数。
(1)、 用比的前项和后项同时除以它们的最大公约数。
(2)、 两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。
(3)、 两个小数的比,向右移动小数点的位置,也是先化成整数比。
4、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
5、比和除法、分数的区别:
除法 被除数 除号(÷) 除数(不能为0) 商不变性质 除法是一种运算
分数 分子 分数线(——) 分母(不能为0) 分数的基本性质 分数是一个数
比 前项 比号(∶) 后项(不能为0) 比的基本性质 比表示两个数的关系
附:商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
五、分数除法和比的应用
1、已知单位“1”的量用乘法。例:甲是乙的 ,乙是25,求甲是多少?即:甲=乙× (15× =9)
2、未知单位“1”的量用除法。例: 甲是乙的 ,甲是15,求乙是多少?即:甲=乙× (15÷ =25)(建议列方程答)
3、分数应用题基本数量关系(把分数看成比)
(1)甲是乙的几分之几?
甲=乙×几分之几 (例:甲是15的 ,求甲是多少?15× =9)
乙=甲÷几分之几 (例:9是乙的 ,求乙是多少?9÷ =15)
几分之几=甲÷乙 (例:9是15的几分之几?9÷15= )(“是”字相当“÷”号,乙是单位“1”)
(2)甲比乙多(少)几分之几?
A 差÷乙= (“比”字后面的量是单位“1”的量)(例:9比15少几分之几?(15-9)÷15= = = )
B 多几分之几是: –1 (例: 15比9少几分之几?15÷9= -1= –1= )
C 少几分之几是:1– (例:9比15少几分之几?1-9÷15=1– =1– = )
D 甲=乙±差=乙±乙× =乙±乙× =乙(1± ) (例:甲比15少 ,求甲是多少?15–15× =15×(1– )=9(多是“+”少是“–”)
E 乙=甲÷(1± )(例:9比乙少 ,求乙是多少?9÷(1- )=9 ÷ =15)(多是“+”少是“–”)
(例:15比乙多 ,求乙是多少?15÷(1+ )=15 ÷ =9)(多是“+”少是“–”)
4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。
例如:已知甲乙的和是56,甲、乙的比3∶5,求甲、乙分别是多少?
方法一:56÷(3+5)=7 甲:3×7=21 乙:5×7=35
方法二:甲:56× =21 乙:56× =35
例如:已知甲是21,甲、乙的比3∶5,求乙是多少?
方法一:21÷3=7 乙:5×7=35
方法二:甲乙的和21÷ =56 乙:56× =35
方法二:甲÷乙= 乙=甲÷ =21÷ =35
5、画线段图:
(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。
(2)分析数量关系。
(3)找等量关系。
(4)列方程。
注:两个量的关系画两条线段图,部分和整体的关系画一条线段图。
第四单元 圆
一、.圆的特征
1、圆是平面内封闭曲线围成的平面图形,.
2、圆的特征:外形美观,易滚动。
3、圆心o:圆中心的点叫做圆心.圆心一般用字母O表示.圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。
半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。
直径d: 通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。
同圆或等圆内直径是半径的2倍:d=2r 或 r=d÷2= d=
4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。
同心圆:圆心重合、半径不等的两个圆叫做同心圆。
5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。
有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角
有二条对称轴的图形:长方形
有三条对称轴的图形:等边三角形
有四条对称轴的图形:正方形
有无条对称轴的图形:圆,圆环
6、画圆
(1)圆规两脚间的距离是圆的半径。
(2)画圆步骤:定半径、定圆心、旋转一周。
二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示。
1、圆的周长总是直径的三倍多一些。
2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
即:圆周率π= =周长÷直径≈3.14
所以,圆的周长(c)=直径(d)×圆周率(π) ——周长公式: c=πd, c=2πr
注:圆周率π是一个无限不循环小数,3.14是近似值。
3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
如果r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3
4、半圆周长=圆周长一半+直径= ×2πr=πr+d
三、圆的面积s
1、圆面积公式的推导
如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。

圆的半径 = 长方形的宽
圆的周长的一半 = 长方形的长
长方形面积 = 长 ×宽
所以:圆的面积 = 长方形的面积 = 长 ×宽 = 圆的周长的一半(πr)×圆的半径(r)
S圆 = πr × r
S圆 = πr×r = πr2
2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。
周长相同时,圆面积最大,利用这点,篮子、盘子做成圆形。
3、圆面积的变化的规律:半径扩大多少倍直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。
如果: r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3=2∶3∶4
则:S1∶S2∶S3=4∶9∶16
4、环形面积 = 大圆 – 小圆=πr大2 - πr小2=π(r大2 - r小2)
扇形面积 = πr2× (n表示扇形圆心角的度数)
5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。
注:一个圆的半径增加a厘米,周长就增加2πa厘米
一个圆的直径增加b厘米,周长就增加πb 厘米
6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π
7、常用数据
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
第五单元、百分数
一、百分数的意义:表示一个数是另一个数的百分之几。
注:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比,所以,百分数又叫百分比或百分率,百分数不能带单位。
1、百分数和分数的区别和联系:
(1)联系:都可以用来表示两个量的倍比关系。
(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。
百分数的分子可以是小数,分数的分子只以是整数。
注:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70、80%,出油率在30、40%。
2、小数、分数、百分数之间的互化
(1)百分数化小数:小数点向左移动两位,去掉“%”。
(2)小数化百分数:小数点向右移动两位,添上“%”。
(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。
(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。
(5)小数 化 分数:把小数成分母是10、100、1000等的分数再化简。
(6)分数 化 小数:分子除以分母。
二、百分数应用题
1、 求常见的百分率 如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几
2、 求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
求甲比乙多百分之几 (甲-乙)÷乙
求乙比甲少百分之几 (甲-乙)÷甲
3、 求一个数的百分之几是多少 一个数(单位“1”) ×百分率
4、 已知一个数的百分之几是多少,求这个数 部分量÷百分率=一个数(单位“1”)
5、 折扣 折扣、打折的意义:几折就是十分之几也就是百分之几十

折扣 成数 几分之几 百分之几 小数 通用
八折 八成 十分之八 百分之八十 0.8
八五折 八成五 十分之八点五 百分之八十五 0.85
五折 五成 十分之五 百分之五十 0.5 半价
6、 纳税 缴纳的税款叫做应纳税额。
(应纳税额)÷(总收入)=(税率)
(应纳税额)=(总收入)×(税率)
7、 利率
(1)存入银行的钱叫做本金。
(2)取款时银行多支付的钱叫做利息。
(3)利息与本金的比值叫做利率。
利息=本金×利率×时间
税后利息=利息-利息的应纳税额=利息-利息×5%
注:国债和教育储蓄的利息不纳税
8、百分数应用题型分类
(1)求甲是乙的百分之几——(甲÷乙)×100% = ×100% = 百分之几
(2)求甲比乙多(少)百分之几—— ×100% = ×100%

① 甲是50,乙是40,甲是乙的百分之几?(50是40的百分之几?)50÷40=125%
② 甲是50,乙是40,乙是甲的百分之几?(40是50的百分之几?)40÷50=80%
③ 乙是40,甲是乙的125%,甲数是多少?(40的125%是多少?)40×125%=50
④ 甲是50,乙是甲的80%,乙数是多少?(50的80%是多少?)50×80%=40
⑤ 乙是40,乙是甲的80%,甲数是多少?(一个数的80%是40,这个数是多少?)40÷80%=50
⑥ 甲是50,甲是乙的125%,乙数是多少?(一个数的125%是50,这个数是多少?)50÷125%=40
⑦ 甲是50,乙是40,甲比乙多百分之几?(50比40多百分之几?)(50-40)÷40×100%=25%
⑧ 甲是50,乙是40,乙比甲少百分之几?(40比50少百分之几?)(50-40)÷50×100%=20%
⑨ 甲比乙多25%,多10,乙是多少?10÷25%=40
⑩ 甲比乙多25%,多10,甲是多少?10÷25%+10=50
⑪ 乙比甲少20%,少10,甲是多少?10÷20%=50
⑫ 乙比甲少20%,少10,乙是多少?10÷20%-10=40
⑬ 乙是40,甲比乙多25%,甲数是多少?(什么数比40多25%?)40×(1+25%)=50
⑭ 甲是50,乙比甲少20%,乙数是多少?(什么数比50多25%?)50×(1-20%)=40
⑮ 乙是40,比甲少20%,甲数是多少?(40比什么数少20%?)40÷(1-20%)=50
⑯ 甲是50,比乙多25%,乙数是多少?(50比什么数多25%?)40÷(1+25%)=40
第六单元、统计
1、 扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。
2、 常用统计图的优点:
(1)、条形统计图直观显示每个数量的多少。
(2)、折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。
(3)、扇形统计图直观显示部分和总量的关系。
第七单元、数学广角
一、研究中国古代的鸡兔同笼问题。
1、 用表格方式解决有局限性,数目必须小,例:
头数 鸡(只)兔(只) 腿数
35 1 34
35 2 33
35 3 32
……
(逐一列表法、腿数少,小幅度跳跃;腿数多,大幅度跳跃。跳跃逐一相结合、取中列表)
2、 用假设法解决
(1) 假如都是兔
(2) 假如都是鸡
(3) 假如它们各抬起一条腿
(4) 假如兔子抬起两条前腿
3、 用代数方法解(一般规律)
注释:这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?
二、和尚分馒头
100个和尚吃100个馒头,大和尚一人吃3个,小和尚三人吃一个。大小和尚各多少人?
国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:
一百馒头一百僧,
大僧三个更无争,
小僧三人分一个,
大小和尚各几丁?"
如果译成白话文,其意思是:有100个和尚分100只馒头,正好分完。如果大和尚一人分3只,小和尚3人分一只,试问大、小和尚各有几人?
方法一,用方程解:
解:设大和尚有x人,则小和尚有(100-x)人,根据题意列得方程:
3x + (100-x)=100
x=25
100-25=75人
方法二,鸡兔同笼法:
(1)假设100人全是大和尚,应吃馒头多少个?
3×100=300(个).
(2)这样多吃了几个呢?
300-100=200(个).
(3)为什么多吃了200个呢?这是因为把小和尚当成大和尚。那么把小和尚当成大和尚时,每个小和尚多算了几个馒头?
3- = (个)
(4)每个小和尚多算了8/3个馒头,一共多算了200个,所以小和尚有:
小和尚:200÷ =75(人)
大和尚:100-75=25(人)
方法三,分组法:
由于大和尚一人分3只馒头,小和尚3人分一只馒头。我们可以把3个小和尚与1个大和尚编为一组,这样每组4个和尚刚好分4个馒头,那么100个和尚总共分为100÷(3+1)=25组,因为每组有1个大和尚,所以有25个大和尚;又因为每组有3个小和尚,所以有25×3=75个小和尚。
这是《直指算法统宗》里的解法,原话是:"置僧一百为实,以三一并得四为法除之,得大僧二十五个。"所谓"实"便是"被除数","法"便是"除数"。列式就是:
100÷(3+1)=25(组)
大和尚:25×1=25(人)
小和尚:100-25=75(人)或25×3=75(人)
我国古代劳动人民的智慧由此可见一斑。
三、整数、分数、百分数应用题结构类型
(一)求甲是乙的几倍(或几分之几或百分之几)的应用题。
解法:甲数除以乙数
例:校园里有杨树40棵,柳树有50棵,杨树的棵树占柳树的百分之几?(或几分之几?)
(二)求甲数的几倍(或几分之几或百分之几)是多少的应用题。
解答分数应用题,首先要确定单位“1”,在单位“1”确定以后,一个具体数量总与一个具体分数(分率)相对应,这种关系叫“量率对应”,这是解答分数应用题的关键。
求一个数的几倍(几分之几或百分之几)是多少用乘法,单位“1”×分率=对应数量
例:六年级有学生180人,五年级的学生人数是六年级人数的56 。五年级有学生多少人?
180×56 =150
(三)已知甲数的几倍(或几分之几或百分之几)是多少,求甲数(即求标准量或单位“1”)的应用题。
解法:对应数量÷对应分率=单位“1”
例:育红小学六年级男生有120人,占参加兴趣活动小组人数的35 . 六年级参加兴趣活动小组人数共有学生多少人?
120÷35 =200(人)

请采纳,谢谢一个大鸡巴很重要

  1. 分数,百分数,比,小数的互化以及读法写法。

  2. 圆的周长面积

  3. 税率及折扣‍

  4. 统计(扇形统计图)

  5. 位置与数对

  6. 鸡兔同笼问题(用假设法和方程法求解)

易错点:

1(   ):(    )=(   )=(  )折=(       )%

2 求阴影部分圆的面积

3关 于存钱与买东西打折

4倒数的认识

5扇形统计图

以上是重点,希望您在小升初的考试中取得好成绩!!!‍

都重要,把书被一遍擦。。